M-Wave Imaging Using Dual Tuned Resonant Coils to Image Metal, Graphite Composite and Plastic By Kevin McGushion EXEL Orbital Systems, Inc

1980 Science Fair

15 Year Old Nerd

Coke Bottle-Glasses

Pen in Pocket

Sadly not a pocket protector.

Slightly Out of Date Hairstyle

Holding My Science Project

Traditional Eddy Current

$$Z = \sqrt{R^2 + X_L^2}$$

M-Wave Sensor

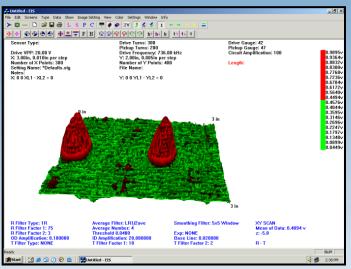
Resonant Transformer

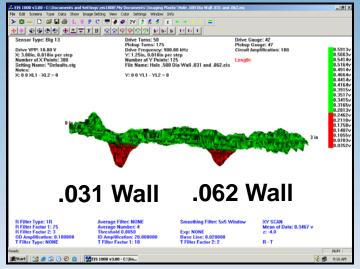
$$f = \frac{1}{2 \pi \sqrt{LC}}$$

Sympathetic Response

Measuring Q

$$Q = \frac{f_r}{f_2 - f_1}$$


Q =
$$\frac{f_r}{Bandwidth}$$



Imaging Insulators

Imaging Plastic

ABS w/ Fabric, BD Medical

EXEL Image w/ M-Wave

Imaging Composite

Flaw Group	Backing Type	Flaw Thickness
A	White Backing Paper	.008
В	Transparent Adhesive Backing	.047
С	Brown Backing Paper	.070
D	Yellow Backing Paper	.007
E	Red Backing Paper	.070

Standoff Multiple Wall Imaging

Stand-Off Sensor with Target at 0.125 Distance

0.280 Thick Wall on Composite Channel

Correcting Image for Distance

μcore

$$L = \mu_0 \cdot \mu core \cdot K \frac{N^2 \cdot A}{\ell}$$

$$L = \mu_0 \cdot \mu \text{core} \cdot \mu \text{Target} \cdot K \quad \frac{N^2 \cdot A}{\ell}$$

* k is coupling coefficient K is Nagaoka coefficient μ_0 is 1.256 x 10-6 H/m (vac)

μTarget

Imaging Insulators

μcore

Mutual Inductance

$$M = k \sqrt{L_1 L_2}$$

μTarget
$$L = \mu_0 \cdot \mu core \cdot K \frac{N^2 \cdot A}{\ell}$$

$$L = \mu_0 \cdot \mu \text{core} \cdot \mu \text{Target} \cdot K \quad \frac{N^2 \cdot A}{\ell}$$

* k is coupling coefficient K is Nagaoka coefficient μ_0 is 1.256 x 10-6 H/m (vac)

Signal Change from Insulators

Permeability vs. Susceptibility

Material	Permeability μ H/m
Steel	8.75 x 10 ⁻⁴
Aluminum	1.256 x 10 ⁻⁶
Teflon	1.256 x 10 ⁻⁶
Nickel	1.25 x 10 ⁻⁶
Vacuum	1.2566 x 10 ⁻⁶

 $\mathcal{X} = \mu r - 1$

Steel v Teflon 696 :1

$$\mu r = \frac{\mu}{\mu_0}$$

Material	Susceptibility \mathcal{X} (mass x 10-8)	
Aluminum	+0.82	
Ammonia	-1.38	
Bismuth	-1.70	
Copper	-0.107	
Hydrogen	-2.49	
Silicon	-0.16	
Oxygen	+133.6	
Water	-0.90	

Conductors overwhelm μ

Paramagnetic and Diamagnetic

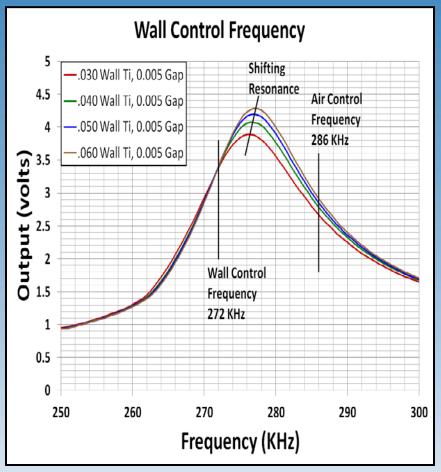
Imaging Composite

Flaw Group	Backing Type	Flaw Thickness
A	White Backing Paper	.008
В	Transparent Adhesive Backing	.047
С	Brown Backing Paper	.070
D	Yellow Backing Paper	.007
E	Red Backing Paper	.070

Imaging Composite

Flaw Group	Backing Type	Flaw Thickness
A	White Backing Paper	.008
В	Transparent Adhesive Backing	.047
С	Brown Backing Paper	.070
D	Yellow Backing Paper	.007
E	Red Backing Paper	.070

Imaging Tube or Pipe Welds



Imaging Orbital Tube Welds

Imaging an Orbital Weld

Image at Resonance, 0.050 x 0.018 x 0.003

Signal to Noise Ratio

0.030" x 0.014" x 0.003" Flaw, External

0.051" x 0.025" x 0.003" Flaw, Internal,

0.030" x 0.014" x 0.003" Top View

Flaw Size	Signal	Noise	S/N
.050 x .018 (od)	.918	.170	5.4
.030 x .014 (od)	.378	.170	2.2
.051 x .025 (id)	.483	.170	2.8

Signal to Noise 3-2.5 Ti

Polar View

Robotic Imaging

